The correct option is D −15
f(x)=eax+ebx
⇒f′(x)=aeax+bebx,f′′(x)=a2eax+b2ebx
∴f′′(x)−2f′(x)−15f(x)=0
⇒{a2eax+b2ebx}−2{aeax+bebx}−15{eax+ebx}=0, for all x.
⇒(a2−2a−15)eax+(b2−2b−15)ebx=0, for all x.
⇒a2−2a−15=0 and b2−2b−15=0
⇒(a−5)(a+3)=0 and (b−5)(b+3)=0
⇒a=5 or -3 and b=5 or -3
But a≠b, hence, a=5,b=−3
or a=−3,b=5⇒ab=−15