Suppose f(x)=eax+ebx, where a≠b, and that f"(x)−2f"(x)−15f(x)=0 for all x. Then the product ab is equal to
25
9
-15
-9
(a2−2a−15)eax+(b2−2b−15)ebx=0 ⇒a2−2a−15=0 and b2−2b−15=0 ⇒a=5 or –3 and b=5 or –3 ∴ a≠b hence a=5 and b=−3 or a=−3 and b=5 ⇒ab=−15