CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Suppose India had a target of producing by 2020 AD, 200,000 MW of electric power, ten percent of which was to be obtained from nuclear power plants. Suppose we are given that, on an average, the efficiency of utilization (i.e. conversion to electric energy) of thermal energy produced in a reactor was 25%. How much amount of fissionable uranium would our country need per year by 2020? Take the heat energy per fission of 235U to be about 200MeV.

Open in App
Solution

Amount of electric power to be generated, P = 2 × 105 MW

10% of this amount has to be obtained from nuclear power plants.

Amount of nuclear power,

= 2 × 104 MW

= 2 × 104 × 106 J/s

= 2 × 1010 × 60 × 60 × 24 × 365 J/y

Heat energy released per fission of a 235U nucleus, E = 200 MeV

Efficiency of a reactor = 25%

Hence, the amount of energy converted into the electrical energy per fission is calculated as:

Number of atoms required for fission per year:

1 mole, i.e., 235 g of U235 contains 6.023 × 1023 atoms.

Mass of 6.023 × 1023 atoms of U235 = 235 g = 235 × 10−3 kg

Mass of 78840 × 1024 atoms of U235

Hence, the mass of uranium needed per year is 3.076 × 104 kg.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Nuclear Fission
CHEMISTRY
Watch in App
Join BYJU'S Learning Program
CrossIcon