The correct option is
B tan−1219R.E.F image
Given a parabola (y−k)2=4(x−h)...(1)
Since, the given parabola passes through O=(0,0)
∴ the given O must satisfy the eqn of parabola
So, (O−k)2=4(O−h)
⇒k2=−4h...(2)
Similarly, Pint L=(0,2) must satisfy the eqn of parabola
∴(2−k)2=4(0−h)
⇒4−4k+k2=−4h
⇒4−4k+k2=k2 (By eqn(2))
⇒4−4k+k2=0
⇒4−4k=0
⇒k=1
Substituting in eqn (2), we get
1=−4h
⇒h=−14
Hence, the eqn of parabola is
(y−1)2=4(x+14)...(3)
Now, Put X=x+14 & Y=y−1
Then, eqn(3) becomes
Y2=4x...(4)
Vertex of the parabola
X=0 Y=0
x+14=0 y−1=0
x=−14 y=1
∴ Vertex A=(−14,1)
Axis of the parabola
y=0
⇒y−1=0
⇒y=1
Foues of the parabola
X=a Y=0
from eq2=4x
on comparing with y2=4ax we get
4a=4
a=1
So, x=1 Y=0
⇒x+14=1 y−1=0
⇒x=1−14 y=1
⇒x=3/4
foues S=(34,1)
Length of Latus Rectum
length of latus Rectum DD1=4a=4×=4
Now, let the coordinate of the point D is (x,y)
By the symmetry of the parabola SD=DD12
⇒SD=42=2
⇒(SD)2=4 (On squaring both sides)
⇒(x1−34)2+(y1−1)2=4...(5) (By using distance formula)
∵SD is perpendicular to the axis of the parabola y=1
∴ distance of the point D from the line y−1=0 Ps
|oxx1+1xy1−1√o2+12|=SD=2
⇒y1−1=2
⇒y1=3
Substituing in eqn(5), we get (x,−34)2+(2)2=4⇒(x,34)2+4=4
⇒(x1−34)2=0
⇒x1=3/4
∴ Coordinate of point D is (34,3)
Now, ∠PDA=θ= Angle b/w the two lines AD & PD
Slope of line AD m1=3−134+14=21=2
Slope of line PD m2=3−134−0=234=83|
∴∠PDA=tan−1|m1−m21+m1m2|=tan−1|2−8/31+2×83|
∠PDA=tan−1|2−8/31+2×83|
∠PDA=tan1|6−833+163|=tan−1|−23×319|=tan−1|−219|
∴∠PDA=tan−1(219)