The correct option is A π4
The given series can be rewritten as
tan−1201+21+tan−1211+23+tan−1221+25+....
∴Tn=tan−12n−11+22n−1=tan−12n−2n−11+2n.22n−1
or Tn=tan−12n−tan−12n−1
Now put n = 1, 2, 3,..., and add. The terms cancel diagonally
∴Sn=tan−12n−tan−11
∴S∞=tan−1(∞)−tan−11=π2−π4=π4→(a)