The correct option is A π4
Let S=tan−113+tan−129+tan−1433+⋯ to ∞
Tn=tan−12n−11+22n−1=tan−12n−2n−11+2n.2n−1
=tan−12n−tan−12n−1
∴ Sn = Sum of n terms of the series.
=(tan−12−tan−11)+(tan−122−tan−12)+(tan−123−tan−122)+⋯+(tan−12n−tan−12n−1)
=tan−12n−tan−12n−1
∴ Sn=limn→∞Sn=limn→∞tan−12n−π4
=π2−π4=π4