tan−1x+tan−1y+tan−1z=π2⇒1−xy−yz−zx=
1
0
-1
2
tan−1(x+y+z−xyz1−(xy+yz+zx))=π2 ⇒1−(xy+yz+zx)=0
If tan−1x+tan−1y+tan−1z=π2,then xy+yz+zx=
If tan−1x+tan−1y+tan−1z=π2 then prove that xy+yz+zx=1.