The correct options are
A 3−√52
D 23+√5
tan[12cos−1(√53)]
Let 12cos−1√53=θ⇒cos2θ=√53
But cos2θ=1−tan2θ1+tan2θ⇒√53=1−tan2θ1+tan2θ
⇒√5+√5tan2θ=3−3tan2θ
⇒(√5+3)tan2θ=3−√5⇒tan2θ=3−√53+√5
⇒tan2θ=(3−√5)24⇒tanθ=3−√52
On rationalising
⇒tanθ=3−√52×3+√53+√5=23+√5