The correct option is
C 1
tanx+tan(x+π3)+tan(x+2π3)=3
⇒ tanx+tanx+tanπ31−tanxtanπ3+tanx+tan2π31−tanxtan2π3=3
⇒ tanx+tanx+√31−√3tanx+tanx−√31+√3tanx=3
⇒ tanx+(1+√3tanx)(tanx+√3)+(1−√3tanx)(tanx−√3)(1+√3tanx)(1−√3tanx)=3
⇒ tanx+tanx+√3+√3tan2x+3tanx+tanx−√3−√3tan2x+3tanx1−3tan2x=3
⇒ tanx+8tanx1−2tan2=3
⇒ tanx−3tan3x+8tanx1−3tan2x=3
⇒ 9tanx−3tan3x1−3tan2x=3
⇒ 3(3tanx−tan3x)1−3tan2x=3
⇒ 3tanx−tan3x1−3tan2x=1
⇒ tan3x=1
Comparing we get, missing space=1