If AB is the tangent to the circle with center O then, find the measure of ∠OCP.
Given that OP = PC.
45∘
The tangent at any point of a circle is perpendicular to the radius through the point of contact.
∴∠OPC=90∘
Given, OP = PC.
So, △OPC is an isosceles right angled triangle.⇒∠PCO=∠POC
∠PCO+∠POC+∠OPC=180∘(Angle sum property of a triangle)
∠PCO+∠POC+90∘=180∘
∠PCO+∠POC=90∘
Hence, ∠POC=∠OCP=45∘