The correct option is D f(π)=π−2tan−1(π2)
f(x)=sin−1(4x4+x2)
Put x=2tanθ
Then f(x)=sin−1(sin2θ)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩−π−2θ, −π2<θ<−π42θ, −π4≤θ≤π4π−2θ, π4<θ<π2=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩−π−2tan−1(x2), x<−22tan−1(x2), −2≤x≤2π−2tan−1(x2), x>2
−2<√8−2<2
∴f(√8−2)=2tan−1(√8−22)=2tan−1(√2−1)
−2<√12−√3<2
∴f(√12−√3)=2tan−1(√12−√32)
−3√8−2=−3(1+√2)2<−2∴f(−(3√8−2))=−π+2tan−1(32(√8−2))
π>2
∴f(π)=π−2tan−1(π2)