∫(sin x cos x1+sin x+cos x)2dx=14∫(2 sin x cos x1+sin x+cos x)2dx=14∫((sin x+cos x)2−1sin x+cos x+1)2dx=14∫(sin x+cos x+1)2(sin x+cos x−1)2(1+sin x+cos x)2=14∫(2+2sin x cos x−2 sin x−2 cos x)dx=x2−cos 2x8+12(cos x−sin x)+c=x2−cos 2x8+cos(x+π4)√2+cα=2,β=√2,γ=−8|α+√2β+γ|=|4−8|=4