In a triangle ABC,cosAa=cosBb=cosCc If a=1√6 then the area of the triangle (in square unit) is
1/24
√3/24
1/8
1/√3
Since,cosAa=cosBb=cosCc⇒cosAksinA=cosBksinB=cosCksinC⇒cotA=cotB=cotC⇒A=B=C=600⇒ΔABC is an equilateral triangle∴Δ=√34a2=√34×16=√324sq.unit
In a triangle ABC, if cosAa=cosBb=cosCc and a = 2, then its area is