In in any ΔABC,b+c12=c+a13=a+b15, then prove that cos A2=cos B7=cos C11.
Let b+c12=c+a13=a+b15 λ(say)b+c=12λ, c+a=13λ, a+b=15λ(b+c+c+a+a+b) 12λ+13λ+15λ2(a+b+c)=40λa+b+c=20λb+c=12λ and a+b+c=20λ⇒ a=8λc+a=13λ and a+b+c=20λ⇒ b=7λa+b=15λ and a+b+c=20λ⇒ c=5λcos A=b2+c2−a22bc49λ2+25λ2−64λ270λ2=17cos B=a2+c2−b22ac=64λ2+25λ2−49λ280λ2=12cos C=a2+b2−c22ab=64λ2+49λ2−25λ2112λ2=1114cos A : cos B : cos C=17:12:1114=2:7:11hence cos A2=cos B7=cos C11