In the given figure, O is the centre of a circle. If ∠AOB=40∘ and ∠BDC=100∘ then find ∠OBC.
60∘
40∘
80∘
120∘
∠AOB=2×∠ACB ⇒∠ACB=12×∠AOB =12×40∘=20∘ In ΔBDC,∠DBC+∠BDC+∠DCB=180∘ ⇒∠DBC+100∘+20∘=180∘ ∴∠DBC=180∘−120∘=60∘
Hence ∠OBC=60∘
In the following figure, O is centre of the circle, ∠ AOB=60∘ and ∠ BDC=100∘, Find ∠ OBC
In the given figure, O is the centre of the circle and AB is a tangent to it at point B. If ∠BDC=65∘, then find ∠BAO