Letf(x)=∫x2(2x+6tanx−2xtan2x)cos2xdx and f(x) passes through (π,0) then number of solutions of the equation f(x)=x3inxϵ[0,2π]is
Open in App
Solution
f(x)=∫[x2(2xcos2x−2xsin2x)+6x2tanxcos2x]dxf(x)=∫2x3cos2xdx+∫3x2sin2xdxf(x)=2x3(sin2x2)−∫6x2(sin2x2)dx+∫3x2sin2xdxf(x)=x3sin2x+cf(x)=0⇒c=0f(x)=x3sin2x Now, f(x)=x3⇒x=0&sin2x=1 x=(4n+1)π4 So, total 3 solutions