wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

The quadratic equation x2+7x+12=0can be visualised to be a rectangle of width (x+3) and length .

A
(x+3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(x+4)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(x+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(x+2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B (x+4)
Let us visualise the quadratic equation x2+7x+12=0 as a rectangle.

For this, the equation has to be expressed as the product of the width (x+3) and length of the rectangle.

Comparing the given equation to the standard form ax2+bx+c, where a,b and c are constants (a0) and factorising a×c such that the numbers add up to b, we have
b=7=4+3.

x2+7x+12=x2+4x+3x+12=x(x+4)+3(x+4)=(x+4)(x+3)

Area of the rectangle=(x+4)(x+3)=x2+7x+12

If (x+3) is the width of the rectangle, then its length is (x+4).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorization
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon