The value oflimx→∞(x2−1x2+1)x2is
1
e-1
e-2
e-3
limx→∞(x2+1−2x2+1)x2=limx→∞(1+−2x2+1)x2=limx→∞[1+−2x2+1]x2+1−2−2x2x2+1=e−2
limx→−1x2−x−2(x2+x)+sin(x+1)