The altitude of an isosceles triangle is 8 cm and the perimeter is 32 cm. Calculate the area of the triangle.
The correct option is A: 48 cm2
Let ABC be the isosceles triangle, the AD be the altitude
Let AB=AC=x then BC=32−2x [Given, Perimeter =32 cm, and Altitude =8 cm]
Since, in an isosceles triangle the altitude bisects the base
So, BD=DC=16−x
In ΔADC, (AC)2 = (AD)2 + (DC)2 [Using Pythagoras theorem]
⇒ x2=(8)2+(16−x)2
⇒ x2=64+256+x2−32x
⇒32x=320
⇒x=10
BC=32−2x=32−20=12 cm
Hence, required area of triangle ABC=12× base × height
=12 ×BC×AD
=12 ×12×8=48 cm2