We know that freezing point of pure water is 0oC. Using the formula , ΔTf = Kf m
where ‘m’ is the molality . First we will calculate the value of m --->
m = no.of moles of solute / wt. of solvent in kg
molar mass of ethylene glycol ( C2H6O2 ) = 62 g/mol
no.of moles of solute = 50 / 62 = 0.806 moles
Now, m= 0.806 / (200 * 10-3 ) = 4.03 molal
So,
ΔTf = Kf m = 1.86 * 4.03 = 7.49 = 7.5 oC ( approx )
ΔTf = Tfo – Tf
7.5 = 0 – Tf
So, Tf = -7.5 oC
Notice that we are cooling the solution to the temperature -9.3oC which is lower than -7.5 oC . This implies that molality of the solution will increase because some of the water turns into ice , thus leaving less water in the solution.
The no. of moles of ethylene glycol (solute) will remain unchanged .
So, we can write , ΔTf cool= Kf mnew
mnew ---> molality of the solution at this new temp.
Tfo – Tf = 0- (-9.3) = 9.3 = 1.86 * (0.806 / wt. of solvent in Kg)
wt. of solvent = 0.1612 kg or 161.2 g
this is the amount of water at -9.3 oC . So, we can say that the amount of ice that will seperate out is :
mass of ice = 200g -161.2g = 38.8 g