The correct option is
B False
The given complex number is −2+2√3i.
The modulus of −2+2√3i=√(−2)2+(2√3)2=√4+12=√16=4.
Therefore, the modulus of −2+2√3i=4
Clearly, in the z-plane the point z=−2+2√3i=(−2,2√3) lies in the second quadrant. Hence, if ampz=θ then,
tanθ=(2√3)/−2=−√3 where, π/2<θ≤π.
Therefore, tanθ=−√3=tan(π−π3)=tan[2π)3]
Therefore, θ=2π3
Therefore, the required amplitude of −2+2√3i is 2π3.