The correct option is C π2
Given lines are x−71=y+3−5=z3 ...(i)
and 2−x−7=y2=z+51
⇒x−27=y2=z+51 ...(ii)
DR's of line equations (i) and (ii) are
(a1,b1,c1)=(1,−5,3)
and (a2,b2,c2)=(7,2,1)
Therefore, cosθ=a1a2+b1b2+c1c2√a21+b21+c21√a22+b22+c22
=1×7+(−5)×2+3×1√12+(−5)2+(3)2√(7)2+(2)2+(1)2
=7−10+3√1+25+9√49+4+1=0
⇒θ=π2