The angles A, B and C of a triangle ABC are in AP, if b : c = : √3:√2, then the angle A is
30°
15°
75°
45°
Since, A,B,C are in A.P.
∴2B=A+C⇒B=600 (∵A+B+C=1800)Using sine rule,sinBb=sinCc∴sin600√3=sinC√2⇒√32√3=sinC√2⇒sinC=1√2⇒C=450∴A=1800−(600+450)=750