The approximate value of ∫91x2dx by using the Trapezoidal rule with 4 equal intervals is?
∫91x2dxb=aa=1⇒f(x)=x2⇒n=f(4)⇒Δx=b−an=9−14=2x0=1x1=3x2=5x3=7x4=9(x0)2=1(x1)2=9(x2)2=25(x3)2=49(x4)2=81⇒∫baf(x)dx=Δx2[f(x0)+2f(x1).......f(x4)]⇒∫9−1x2dx=22[1+18+50+98+81]⇒∫91x2dx=90+50+110⇒250