The area of an isosceles triangle is 60cm2 and the length of each one of its equal sides is 13cm, the length of its base is
The correct option is B. 24cm or 10cm
Let ABC be an isosceles triangle such that AB=AC=13cm
Let BC=2x
Now, drop AD⊥BC
∴BD=DC [Perpendicular of an isosceles triangle bisects the third side.]
⇒BD=DC=2x2=x
Consider, right ΔABD, by Pythagoras Theorem,
⇒AD2+BD2=AB2
⇒AD2+x2=132
∴AD2=169−x2...(i)
Also, area of ΔABC=60cm2
⇒12×BC×AD=60
⇒12×2x×AD=60
⇒AD=60x...(ii)
From (i) and (ii), we get,
⇒3600x2=169−x2
⇒3600=169x2−x4
⇒x4−169x2+3600=0
⇒x4−144x2−25x2+3600=0
⇒x2(x2−144)−25(x2−144)=0
⇒(x2−144)(x2−25)=0
⇒x=12,5
Therefore, BC=24cm or 10cm.