The area of the region bounded by x=0,y=0,x=2,y=2,y≥ex and y≤ℓnx
Consider the given equations, y≤ex,y≥logx,y=2,x=0,y=0.
Let,
y=ex ………..(1)
y=logex ……….(2)
y=2 ………(3)
From equation (1) and (3), we get
2=ex
loge2=logeex
loge2=x.logee(∵logee=1)
x=loge2
So, point of intersection of equation (1) and (3)(x,y)i.e.(loge2,2) .
Now, from equation (2) and (3,we get .
2=logex
∵(logex=y⇒x=ey)
∴e2=x
So, point of intersection of equation (2) and (3) (x,y)i.e.(e2,2)
Area of rectangle OHBE is,A1=e2×2=2e2
Area of region AHBA is,
A2=∫e2−11logxdx=[xlogx+x]e2−11+C1=[(e2−1)log(e2−1)+e2−1]−(1log1+1)+C1
=(e2−1)log(e2−1)+e2−1−1+C1=(e2−1)log(e2−1)+e2−2+C1
Area of region DCED is,
A3=∫21exdy=e2−e+C2
Required area of region OABCDO is (A) =
Area of rectangle OHBE is(A1) - Area of region AHBA(A2) - Area of region DCED (A3)
=2e2−((e2−1)log(e2−1)+e2−2+C1)−(e2−e+C2)
=2e2−(e2−1)log(e2−1)+2+e−C1−C2
=2e2−(e2−1)log(e2−1)+2+e+C
Hence, this is the answer.