The argument of complex number Z = 3+i2i+(1+i)2
π/4
-tan-1 5
tan-1 5
-tan-1 3
(1+i)2 = 1 + i2 + 2i = 2i
Z = 3+i2i+2i = 3+i4i * ii = −1+3i−4 = 1−3i4
if x +iy = 1−3i4 ⇒ (x,y) = (14,−34) is in 4th quadrant
So, θ=[tan−1|yx|]
= -tan−13
The principal argument of the complex number 2+i4i+(1+i)2, ( where i=√−1) is
Arguments of Z = (2+i)[4i+(1+i)2] is :