Given that:-
arg(z−6−3iz−8−6i)=π4
To find:- Centre of the arc arg(z−6−3iz−8−6i)=π4
Solution:-
Let z=x+iy
∴(z−6−3iz−8−6i)=(x+iy)−6−3i(x+iy)−8−6i
⇒=(x−6)+i(y−3)(x−8)+i(y−6)
On multiplying and dividing with the conjugate of denominator, we have
(z−6−3iz−8−6i)=(x−6)+i(y−3)(x−8)+i(y−6)×(x−8)−i(y−6)(x−8)−i(y−6)
⇒=(x2+y2−14x−9y+66)+i(3x−2y−12)(x−8)2+(y−6)2
⇒(z−6−3iz−8−6i)=(x2+y2−14x−9y+66)(x−8)2+(y−6)2+i3x−2y−12(x−8)2+(y−6)2=a+ib(say)
Given that:-
arg(z−6−3iz−8−6i)=pi4
∴ba=tanπ4
⇒ba=1⇒a=b
∴(x2+y2−14x−9y+66)(x−8)2+(y−6)2=3x−2y−12(x−8)2+(y−6)2
⇒x2+y2−14x−9y+66=3x−2y−12
⇒x2+y2−14x−9y+66−3x+2y+12=0
⇒x2+y2−17x−7y+78=0.....(1)
Equation (1) is an equation of circle
Therefore comparing it with the general equation of circle, i.e., x2+y2+2gx+2fy+c=0, we get
g=−172
f=−72
∴ Centre of circle will be (−g,−f)=(172,72).