The correct option is
A (9, 3)Given equation of circle
x2+y2−12x−4y+30=0
(x−6)2−36+(y−2)2−4+30=0(x−6)2+(y−2)2=10
Maximum distance of (0,0) from circle is
=√(6−0)2+(2−0)2+√10=2√10+√10=3√10
Let coordinates of point P(x1,y1)
then √(x1−0)2+(y1−0)2=3√10(1)
and this point also satisfies circle
(x1−6)2+(y1−2)2=10(2)
Solving (1)x12+y12=90(3)
Solving (2)x12+y12−12x1−4y1+30=0(4)
Solving (3),(4)
12x1+4y1−30=9012x1+4y1=1203x1+y1=30(5)
Equation of line passing through origin, center and point (x1,y1) is
(y−0)=(26)(x−0)3y=x
Point (x1,y1) also lies on this line
3y1−x1=0(6)
Solving (5),(6)
3x1+y1=30
9y1−3x1=0
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯10y1+0=30
⇒y1=3,x1=9
The point (x1,y1) is (9,3)