The co-ordinates of the vertices of Triangle ABC are A(4,1),B(–3,2) and C(0,k). Given that the area of △ABC is 12 sq. units. Find the value(s) of k.
5 only
only
Area of a triangle formed by (x1,y1), (x2,y2) (x3,y3) = 12|x1(y2 - y3) + x2(y3 - y1)+ x3(y1 - y2)|
Thus, the area of ΔABC formed by the given points A(4, 1), B(-3, 2) and C(0, k) is
=12|4(2−k)+(−3)(k−1)+0(1−2)|
=12|8−4k−3k+3|=12|11−7k|
But given that the area of ΔABC=12 sq. unit
⇒|11−7k|=24
±(11−7k)=24 ⇒11−7k=24 or −(11−7k)=24
If11−7k=24, then −7k=24−11=13 ⇒k=−137
−(11−7k)=24⟹−11+7k=24
⇒7k=24+11=35 ⇒k=357=5
Hence the values of k are : 5, −137