wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The coefficient of x50 in the expansion of (1+x)1000+2x(1+x)999+3x2(1+x)989+.....+1001x1000 is

A
1000C50
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1001C50
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1002C50
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
21001
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 1002C50
Given
S=(1+x)1000+2x(1+x)999+...+1000x999(1+x)+1001x1000×x(1+x) ....(1)
S.x(1+x)=x(1+x)999+2x2(1+x)998+...+1000x1000+1001x10011+x ...(2)
Now,
S[1xx+1]=(1+x)1000+[x(1+4)999+x2(1+x)998+...+x1000)S11001x10011+x
S1=x(1+x)999+x2(1+x)998+....+x1000..... (1) ×x1+x
S1.x1+x=x2(1+x)998+....+x10011+x ... (2)
S11+x=x(1+x)999x10011+xs1
=x(1+x)1000x1001
So we get
S1+x=(1+x)1000+x(1+x)1000x10011001x10011+x
S=(1+x)1002x1001(1+x)1001x1001
Now coff. of x50
(1+x)1002x1001(x+1)1001x1001
=1002C50

1056058_997847_ans_7a0e407b41524c0aa85a83402f4d35f4.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binomial Theorem for Any Index
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon