The coefficient of x50 in the expansion of (1+x)1000+2x(1+x)999+3x2(1+x)998+.....+1001x1000
A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C Let, S=(1+x)1000+2x(1+x)999+2x(1+x)999+3x2(1+x)998+....+1001x1000 x1+xS=x(1+x)999++2x2(1+x)998+.... +10001000x+1001x10011+x Subtract above equations, (1−x1+x)S=(1+x)1000+(1+x)999+ x2(1+x)998+....+x1000−100110011+x ⇒S=(1+x)1001+x(1+x)1000+x2(1+x)999 +....+x1000(1+x)−1000]x1001 =(1+x)1001[(x1+x)1001−1]x1+x−1−1001x1001 [sum of G.P] =(1+x)1002−x1002−1002x1001 ∴ coefficient of x50 in S=coefficient of x50in[(1+x)1002−x1002−1002x1001]=1002C50