wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The coefficient ofx50 in the expression (1+x)100+2x(1+x)99+3x2(1+x)98+.........+101.x100 is:

A
102C50
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
102C51
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
105C50
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
105C49
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 102C50
The above expression is an Arithmetic geometric progression.
S=(1+x)100+2x(1+x)99...101x100 ...(i)
x(1+x)1S=x(1+x)99+2x2(1+x)98...101x101(1+x)1 ...(ii)
Subtracting ii from i we get
S(1+x)1=(1+x)100+x(1+x)99+x2(1+x)98...x100101x101(1+x)1
S=[(1+x)101+x(1+x)100+x2(1+x)99...x100(1+x)]101x101
The term in the square bracket is a G.P with common ration x1+x
Hence
S=(1+x)101(1(x1+x)101)1x1+x101x101
=(1+x)102(1(x1+x)101)101x101
=(1+x)102x101(1+x)101x101
Hence coefficient of x50 is 102C50

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binomial Coefficients
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon