The coefficient ofx50 in the expression (1+x)100+2x(1+x)99+3x2(1+x)98+.........+101.x100 is:
A
102C50
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
102C51
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
105C50
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
105C49
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C102C50 The above expression is an Arithmetic geometric progression. S=(1+x)100+2x(1+x)99...101x100 ...(i) x(1+x)−1S=x(1+x)99+2x2(1+x)98...101x101(1+x)−1 ...(ii) Subtracting ii from i we get S(1+x)−1=(1+x)100+x(1+x)99+x2(1+x)98...x100−101x101(1+x)−1 S=[(1+x)101+x(1+x)100+x2(1+x)99...x100(1+x)]−101x101 The term in the square bracket is a G.P with common ration x1+x Hence S=(1+x)101(1−(x1+x)101)1−x1+x−101x101 =(1+x)102(1−(x1+x)101)−101x101 =(1+x)102−x101(1+x)−101x101 Hence coefficient of x50 is 102C50