The coefficient of xn−2 in the polynomial (x−1)(x−2)(x−3)....(x−n) is
There are total of n brackets. The term xn−2 will be formed when integers are chosen from any two brackets and x is chosen from all the other brackets and multiplied.
Thus, the Coefficient of xn−2 is
C=(1×2+1×3+...+1×n)+(2×3+2×4+..+2×n)+...+((n−1)×n)
=((n)(n+1)2−1)+2((n)(n+1)2−1−2)+...+(n−1)((n)(n+1)2−(1+2+3+..+(n−1)))
={(1+2+3+...+(n−1))((n)(n+1)2)}−{1+2(1+2)+3(1+2+3)+...+(n−1)(1+...+n−1)}
={((n−1)(n)2)((n)(n+1)2)}−{∑n−11k((k)(k+1)2)}
={n2(n2−1)4}−{∑n−11k3+k22}
={n2(n2−1)4}−12{((n−1)(n)2)2+(n−1)n(2n−1)6}
=n(n−1)4{n(n+1)−n(n−1)2−2n−13}
=n(n−1)4{n(n+3)2−2n−13}
=n(n−1)4{3n2+9n−4n+26}
=n(n−1)4{(3n+2)(n+1)6}
∴ Option B is correct.