The coefficient of xn in the series 1+a+bx1!+a+bx22!+a+bx33!+..... is
abnn!
ebann!
eabnn!
ea+babnn!
Explanation for the correct answer:
Finding the coefficient of xn:
Given expression is 1+a+bx1!+a+bx22!+a+bx33!+.....
We know that, ex=1+x1!+x22!+x33!+......
Here replace x with ax+b we get,
ea+bx=1+a+bx1!+a+bx22!+a+bx33!+......
⇒ea+bx=eaebx
⇒ea+bx=ea1+bx+bx22!+....
So, the coefficient of xnin the expansion of ea+bx=1+a+bx1!+a+bx22!+a+bx33!+......is eabnn!
Hence, option (C) is the correct answer.
The coefficient of xn in the series 1+(2+bx)1!+(2+bx)22!+...+(2+bx)nn! is eabnn!. Find a