The correct option is B d(b+d)+a(a+c)=0
Let α,β,γ are the roots of ax3+bx2+cx+d=0
Such that αβ=−1
S1=α+β+γ=−−ba⇒α+β=−ba−γS2=αβ+βγ+γα=ca⇒γ(α+β)=ca+1=c+aaS3=αβγ=−da⇒γ=da
From S1 and S3,
α+β=−ba−da=−(b+d)a (4)
From S2 and (4), we have
−(b+d)a(da)=c+aa⇒d(b+d)+a(a+c)=0
Hence, option 'B' is correct.