CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

The degree of  is not well defined.                                               
  1. d3ydx3+dydx=ey
  2.  e(dydx)=k+dydx
  3. (1+(dydx)2)=yd3ydx3
  4. d3ydx3+cosydydx=0


Solution

The correct option is B  e(dydx)=k+dydx
The degree is clearly defined for the cases d3ydx3+cosydydx=0 and d3ydx3+dydx=ey.
The DE (1+(dydx)2)=yd3ydx3 can be squared on both sides and the degree becomes 2.
Whereas in  e(dydx)=k+dydx even after applying ln on both sides we can't reduce to polynomial form.

flag
 Suggest corrections
thumbs-up
 
0 Upvotes


Similar questions
View More


People also searched for
View More



footer-image