The correct options are
A a2+b2+c2
C (a−b)(b−c)(c−a)
D a+b+c
Δ=∣∣
∣
∣∣a2a2−(b−c)2bcb2b2−(c−a)2cac2c2−(a−b)2ab∣∣
∣
∣∣=∣∣
∣
∣∣a2a2bcb2b2cac2c2ab∣∣
∣
∣∣+∣∣
∣
∣∣a2(b−c)2bcb2(c−a)2cac2(a−b)2ab∣∣
∣
∣∣Δ=∣∣
∣
∣∣a2(b−c)2bcb2(c−a)2cac2(a−b)2ab∣∣
∣
∣∣
Applying R2→R2−R1,R3→R3−R1
Δ=∣∣
∣
∣∣a2(b−c)2bcb2−a2(c−a)2−(b−c)2ca−bcc2−a2(a−b)2−(b−c)2ab−bc∣∣
∣
∣∣=∣∣
∣
∣∣a2(b−c)2bcb2−a2a2−b2−2c(a−b)c(a−b)c2−a2a2−c2−2b(a−c)b(a−c)∣∣
∣
∣∣=(b−a)(c−a)∣∣
∣
∣∣a2(b−c)2bcb+ab+a−2ccc+aa+c−2bb∣∣
∣
∣∣=(b−a)(c−a)(a2(b(b+a−2c)−c(a+c−2b))−(b−c)2(b(b+a)−c(c+a))+bc((b+a)(a+c−2b)−(c+a)(b+a−2c)))=(b−a)(c−a)(b−c)(a+b+c)(a2+b2+c2)