The differential equation of family of curves y2=4a(x+a) is
a) y2=4dydx(x+dydx)
b) 2ydydx=4a
c) yd2ydx2+(dydx)2=0
d) 2xdydx+y(dydx)2−y=0
Given that, y2=4a(x+a) …(i)
On differentiating both sides w.r.t. x, we get
2ydydx=4a⇒2ydydx=4a⇒ydydx=2a⇒a=12dydx …(ii)
On putting the value of a from Eq. (ii) in Eq. (i), we get
y2=−2ydydx(x+12ydydx)⇒y2=2xydydx+y2(dydx)2⇒2xdydx+y(dydx)2−y=0
The option (d) is the required choice.