The differential equation whose solution is y=c1 cos ax+c2 sin ax is
(Where c1,c2 are arbitrary constants)
[MP PET 1996]
y=c1 cos ax+c2 sin ax
Differentitate it w.r.t.x, we get
dydx=−c1 a sin ax+c2 a cos ax
Again d2ydx2=−c1 a2 cos ax−c2a2 sin ax
d2ydx2=−a2(c1 cos ax+c2 sin ax)⇒d2ydx2=−a2y
or d2ydx2+a2y=0.