The discriminant of the quadratic equation $3x^2-4\sqrt{3}x+4=0$ is
Open in App
Solution
Given,
$3x^2-4\sqrt{3}x+4=0$
Comparing the equation with $ax^2+bx+c=0$, we get
$a=3, b=-4\sqrt{3}, c=4$
We know the discriminant is
$D=b^2-4ac\\
\Rightarrow D=(-4\sqrt{3})^2-4\times 3\times4\\
\therefore D=0$