wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The displacement (x) of a particle as a function of time (t) is given by
X = a sin (bt + c)
Where a, b and c are constants of motion. Choose the correct statement(s) from the following

A
The motion repeats itself in a time interval
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
The energy of the particle remains constant
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
The velocity of the particle is zero at x =
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
The acceleration of the particle is zero at x =
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A The motion repeats itself in a time interval
The motion of the particle is simple harmonic. The displacement at time t is X = a sin (bt+c) Displacement at time (t+2πb) is x(at t+2πb)=a sin[b(t+2πb)+c] =a sin(bt+c+2π) =a sin(bt+c) =x at time t Hence statement (a) is correct. Statement (b) is also correct since the same displacement is recovered after a time interval of 2πb .Statement (c) is correct because the velocity is zero when the displacement = ± the amplitude, i.e. at the extreme ends of the motion. Statement (d)is incorrect, the acceleration is maximum (in magnitude) at x = ± a.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Expression for SHM
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon