The correct option is C √26
x−41=y+3−4=z+17=λ1
and x−12=y+1−3=z+108=λ2
For intersection point,
4+λ1=1+2λ2
⇒λ1−2λ2=−3 ⋯(1)
−3−4λ1=−1−3λ2
⇒4λ1−3λ2=−2 ⋯(2)
−1+7λ1=−10+8λ2
⇒7λ1−8λ2=−9 ⋯(3)
From equations (1) and (2), we get
λ1=1,λ2=2
which satisfies equation (3).
⇒ Point of intersection is (4+1,−3−4,−1+7)
i.e., (5,−7,6)
Distance of (5,−7,6) from (1,−4,7) is √16+9+1=√26