Let the equation of hyperbola be of the form:
x2a2−y2b2=1
Given that hyperbola passes through point (3,0) and (3√2,2)
∴32a2−02b2=1
⇒9a2=1
⇒a2=9 …(1)
And (3√2)2a2−22b2=1
⇒189−4b2=1 (∴a2=9)
⇒2−4b2=1
⇒4b2=1
⇒b2=4 …(2)
∴ Eccentricity ,e=√1+b2a2
⇒e=√1+49 [From equation (1) and (2)]
⇒e=√133