1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Distinguish Acute Angle Bisectors and Obtuse Angle Bisectors
The equation ...
Question
The equation of the bisector of the angle between the lines
3
x
−
4
y
+
7
=
0
and
12
x
−
5
y
−
8
=
0
A
99
x
−
77
y
+
51
=
0
,
21
x
+
27
y
−
131
=
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
99
x
−
77
y
+
51
=
0
,
21
x
+
27
y
+
131
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
99
x
−
77
y
+
131
=
0
,
21
x
+
27
y
−
51
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
99
x
−
77
y
+
51
=
0
,
21
x
+
27
y
−
131
=
0
Equation of the angle bisector of
3
x
−
4
y
+
7
=
0
and
12
x
−
5
y
−
8
=
0
is given by
3
x
−
4
y
+
7
√
3
2
+
4
2
=
±
12
x
−
5
y
−
8
√
12
2
+
5
2
⟹
3
x
−
4
y
+
7
5
=
±
12
x
−
5
y
−
8
13
3
x
−
4
y
+
7
5
=
12
x
−
5
y
−
8
13
39
x
−
52
y
+
91
=
60
x
−
25
y
−
40
⟹
21
x
+
27
y
−
131
=
0
-----(1)
3
x
−
4
y
+
7
5
=
−
12
x
−
5
y
−
8
13
39
x
−
52
y
+
91
=
−
60
x
+
25
y
+
40
⟹
99
x
−
77
y
+
51
=
0
---(2)
Therefore the equation of the bisector of the angle between
3
x
−
4
y
+
7
=
0
and
12
x
−
5
y
−
8
=
0
is
99
x
−
77
y
+
51
=
0
and
21
x
+
27
y
−
131
=
0
Suggest Corrections
0
Similar questions
Q.
The equations of the bisectors of the lines 3x-4y+7=0 and 12x-5y-8=0 are: