The correct option is A y=√6x+√2
Equation of tangent in slope form of parabola y2=8√3x is y=mx+c ......(i)
where, c=am
∴c=2√3m .....(ii)
Also, tangent to the hyperbola
4x2−y2=4
or x21−y24=1 is
c2=a2m2−b2
c2=1m2−4
⇒(2√3m)2=m2−4 [from equation (ii)]
⇒12m2=m2−4
⇒m4−4m2−12=0
⇒m4−6m2+2m2−12=0
⇒m2(m2−6)+2(m2−6)=0
⇒(m2+2)(m2−6)=0
⇒m2−6=0 and m2+2≠0
⇒m2=6
⇒m=±√6
i.e., m=√6 as m is positive slope.
∴ from equation (i),
y=√6x+2√3√6
⇒y=√6x+√2