The correct option is B 7(x−1)−4(y−2)−(z+1)=0
Clearly lines are parallel to ^i+2^j−^k and ^i+^j+3^k
Thus normal vector of required plane is,
→n=∣∣
∣
∣∣^i^j^k12−1113∣∣
∣
∣∣=7^i−4^j−^k
Hence, required plane is
[→r−(^i+2^j−^k)]⋅→n=0
⇒[→r−(^i+2^j−^k)]⋅(7^i−4^j−^k)=0
⇒7(x−1)−4(y−2)−(z+1)=0