The equation of the reflection of the hyperbola (x−4)216−(y−3)29=1 about the line x+y−2=0 is
A
(x+3)216−(y+4)216=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(x+2)216−(y+1)29=−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(x+1)29−(y+2)216=−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(x+1)216−(y+2)29=−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C(x+1)29−(y+2)216=−1 Any point on the hyperbola is (4+4secθ,3+3tanθ) Reflection of point with respect to the line x+y−2=0 is ⇒h−(4+4secθ)1=k−(3+3tanθ)1=−2(4+4secθ+3+3tanθ−2)2 ∴h=−1−3tanθ and k=−2−4secθ ⇒(h+1)232−(k+2)242=−1 ∴(x+1)29−(y+2)216=−1