The correct options are
C 99x−77x+51=0
D 21x+27y−131=0
Given lines are 3x−4y+7=0 and 12x−5y−8=0
We know that the equation of angle bisectors is
3x−4y+7√32+(−4)2=±12x−5y−8√(12)2+(−5)2⇒3x−4y+75=±12x−5y−813
⇒39x−52y+91=±(60x−25y−40)
Now, the two bisectors are
39x−52y+91=60x−25y−40⇒21x+27y−131=0
And
39x−52y+91=−(60x−25y−40)⇒99x−77x+51=0