wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

The following table gives distribution of marks for 50 students of a class. Calculate mean deviation from the mean and median respectively from the data:
Marks Obtained 140−150 150−160 160−170 170−180 180−190 190−200
Frequency 4 6 10 18 9 3

Open in App
Solution

Calculation of M.D from Median
Marks Mid value m Frequency
(f)
Cumulative frequency |dM| = |m − M|
M = 172.78
f|dM|
140 − 150
150 − 160
160 − 170
170 − 180
180 − 190
190 − 200
145
155
165
175
185
195
4
6
10
18(f)
9
3
4
4 + 6 = 10
10 + 10 = 20(c.f)
20 + 18 = 38
38 + 9 = 47
47 + 3 = 50
27.78
17.78
7.78
2.22
12.22
22.22
111.12
106.68
77.8
39.96
109.98
66.66
Σf = N = 50 Σf|dM| = 512.2

Median = Size of N2th item
= Size of 502th item
= Size of 25th item

25th item lies under the 38th cumulative frequency therefore 170 − 180 is the median class interval.

Thus, median value will be as follows:

M=l1+N2-c.ff×ior, M =170+25-2018×10or, M =170+5018or, M =170+2.78 M =172.78Hence, Mean deviation MDM=ΣfdMΣf=512.250=10.24

Calculation of M.D from Mean
Marks Mid value
m
Frequency
(f)
fm dX=m-XX=171.2 fdX
140 − 150
150 − 160
160 − 170
170 − 180
180 − 190
190 − 200
145
155
165
175
185
195
4
6
10
18(f)
9
3
580
930
1650
3150
1665
585
26.2
16.2
6.2
3.8
13.8
23.8
104.8
97.2
62
68.4
124.2
71.4
Σf = 50 Σfm = 8560 ΣfdX=528

Mean (X)=ΣfmΣf=856050=171.2

Hence, Mean deviation from the arithmetic mean is:

MDX=ΣfdXΣf=52850=10.56

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Measures of Central Tendency
STATISTICS
Watch in App
Join BYJU'S Learning Program
CrossIcon